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We propose an ab initio formulation that enables a rigorous calculation of the first-order nona-
diabatic couplings (NAC) between electronic states based on time-dependent density functional
theory in conjunction with planewave bases, projector augmented-wave pseudopotentials, and hybrid
exchange-correlation functionals. The linear and quadratic time-dependent response theory is used
to derive analytic expressions for the NAC matrix elements. In contrast to the previous formulation
in atomic basis sets, the present formulation eliminates explicit references to Kohn-Sham virtual
orbitals. With the introduction of Lagrangian functionals, the present formulation circumvents expen-
sive derivative calculations of Kohn-Sham orbitals with respect to ionic coordinates. As a validation
of the formulation, the NAC matrix elements of small molecules LiH and HeH+ are calculated and
compared to previous results with the atomic orbital basis. This development paves the way for accu-
rate ab initio nonadiabatic molecular dynamics in extended systems. Published by AIP Publishing.
https://doi.org/10.1063/1.5065504

I. INTRODUCTION

Nonadiabatic (NA) electron-ion coupling dynamics are
ubiquitous and essential to many important problems in
physics, chemistry, and materials science, ranging from inter-
facial charge transfer, formation of polarons, charge transport,
exciton diffusion and dynamics, photocatalysis, and chemi-
cal reactions to name a few.1–4 The first-order NA couplings
(NAC) between two electronic states are crucial quantities
that control the NA dynamics. For instance, they determine
the probabilities of nonadiabatic transitions among potential
energy surfaces (PESs) and the velocity adjustment. The latter
plays a critical role to yield a long-term Boltzmann distri-
bution and detailed balance for the electronic states.5–7 In
addition, NAC are key ingredients which account for elec-
tron (exciton)-phonon coupling strengths in materials. Nowa-
days, time-dependent density functional theory (TDDFT)8,9

has become one of the most powerful, versatile, and popular
tools to probe electronic structure and excitations in molecular
and solid-state materials.10–13 However, the evaluation of NAC
via TDDFT has been an enduring challenge due to the fact
that the many-body wavefunctions of the ground and excited
states are inaccessible in TDDFT.14 As a result, many approx-
imate methods have been proposed to account for the NAC
between a ground state and an excited state15–20 and between
two excited states21–25 via TDDFT. It is only very recently that
exact theories have been formulated by Send and Furche26 to
compute the ground state-excited state NAC and by Li et al.
first27,28 and Ou et al. subsequently29 to compute the excited
state-excited state NAC via TDDFT in atomic bases. More
specifically, the NAC between the ground and excited states

a)Email: xu.zhang@csun.edu

and between two excited states can be determined from the lin-
ear and the quadratic response theory, respectively, in TDDFT
without the knowledge of the many-body wavefunctions. In the
remainder of the paper, these exact theories will be referred to
as NAC-TDDFT.

The previous NAC-TDDFT was formulated based on
atomic orbitals (AO),26–29 targeted primarily at molecular sys-
tems. The most important advantage of the AO bases is that
hybrid functionals, crucial for TDDFT calculations, can read-
ily be used even for large systems, while they are often quite
expensive with planewave basis. However, many problems in
chemical and materials research involve extended systems,
such as 2D materials and their heterostructures, quantum and
topological materials, halide perovskites, extended catalytic
surfaces, and hybrid structures combining extended and finite
systems, which are of tremendous current interest. Planewave
bases are a natural choice for periodic and extended systems,
offering advantages of simplicity, completeness, possibility of
using Fast Fourier Transform algorithm, and absence of Pulay
forces. Owing to these advantages, it is of great interest to
reformulate the NAC-TDDFT so that it is applicable to plane
waves and pseudopotentials.

Pseudopotentials are routinely used in conjunction
with plane waves. Compared to ultrasoft30 and norm-
conserving31,32 pseudopotentials, the projector augmented-
wave (PAW)33,34 pseudopotential has two advantages that are
important to our objective: (1) Via a linear transformation,
the pseudo-wavefunctions can be readily transformed to the
true “all-electron (AE)” wavefunctions, which are key ingre-
dients in the present formulation. (2) The PAW provides a
higher transferability and a lower energy cutoff than the norm-
conserving pseudopotentials. Here, we will focus on PAW in
our formulation.
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The objective of this work is to reformulate NAC-TDDFT
so that it can be used in conjunction of plane waves and PAW.
The theoretical framework underlying the present deviations
is the same as that in the AO based NAC-TDDFT,26–29 i.e.,
the linear and quadratic time-dependent response theory of
TDDFT. However, the explicit expressions of NAC are quite
different from those in the AO based NAC-TDDFT. Moreover,
the present formulation does not involve virtual Kohn-Sham
(KS) orbitals, in contrast to the AO based NAC-TDDFT. In
addition, the present formulation makes use of appropriate
Lagrangians proposed previously26–29 to enable efficient cal-
culations of NAC. In Sec. II, we present the theoretical formu-
lation based on plane waves and PAW. In Sec. III, the relevant
NAC of small molecules LiH and HeH+ are calculated using
the formulation and compared to the previous results obtained
by the AO based NAC-TDDFT. Finally, we conclude with an
outlook for future development in Sec. IV.

II. METHODOLOGY

The basic idea of deducing NAC from the time-dependent
response theory is to find the poles (residues) of the response
function for the expectation value of a time-independent oper-
ator d/dx, when the system is perturbed by a time-dependent
external potential. Here x denotes the ionic coordinate. Follow-
ing Refs. 27 and 28, we define an auxiliary coupling which is
the expectation value of d/dx. One can calculate the auxiliary
coupling from both the exact many-body wavefunction based
time-dependent perturbation theory and TDDFT. By compar-
ing the residues of the auxiliary coupling thus obtained, one
can extract the explicit formulation of NAC in the framework
of TDDFT. Here, we only consider the Γ-point in the Brillouin
zone, where the KS orbitals are taken to be real. In the follow-
ing, we use indices i, j, k, . . . to label occupied KS orbitals,
σ, τ, . . . to denote their spins, α, β, . . . to label excited states,
and ā, b̄, . . . to label the harmonic perturbing potential.

A. Many-body wavefunction based time-dependent
perturbation theory

Considering a many-electron system, the energy and
many-body wavefunction can be obtained by the eigenvalue
equation of time-independent many-body Hamiltonian,

Ĥ0 |Ψα〉 = Eα |Ψα〉. (1)

The system initially stays on the ground state α = 0. Start-
ing from time t = 0, the system is perturbed by a harmonic
perturbing potential with frequencies {ωā},

δV̂ext(t) =
∑

ā

[
V̂+

ā eiωāt + V̂−ā e−iωāt
]
. (2)

Since the external potential is real, we have V̂+
ā =

(
V̂−ā

)∗
.

The evolution of the many-body wavefunction follows the
Schrodinger equation,

i
∂ |Ψ(t)〉
∂t

=
(
Ĥ0 + δV̂ext(t)

)
|Ψ(t)〉. (3)

Here, |Ψ(t)〉 is the exact time-dependent many-body wavefunc-
tion which can be expressed perturbatively up to the second
order as

|Ψ(t)〉 = e−iE0t
(
|Ψ0〉 + ���Ψ

(1)(t)
〉

+ ���Ψ
(2)(t)

〉)
, (4)

where the first- and second-order many-body wavefunctions
can be expressed by a linear combination of eigenstates of Ĥ0

as ���Ψ
(1)(t)

〉
=

∑
α

B(1)
α (t)|Ψα〉,

���Ψ
(2)(t)

〉
=

∑
α

B(2)
α (t)|Ψα〉.

(5)

Substituting Eqs. (4) and (5) into the Schrodinger equation (3)
and using the harmonic potential in Eq. (2), one can obtain the
first- and second-order coefficients as

B(1)
α (t) = −

∑
ā

〈Ψα |V̂+
ā |Ψ0〉

ωα + ωā
eiωāt −

∑
ā

〈Ψα |V̂−ā |Ψ0〉

ωα − ωā
e−iωāt

(6)

and

B(2)
α (t) =

∑
āb̄,β




〈
Ψα

���V̂
+
ā

���Ψβ
〉〈
Ψβ

���V̂
+
b̄

���Ψ0

〉
(
ωα + ωā + ωb̄

) (
ωβ + ωb̄

) ei(ωā+ωb̄)t

+

〈
Ψα

���V̂
+
ā

���Ψβ
〉〈
Ψβ

���V̂
−

b̄
���Ψ0

〉
(
ωα + ωā − ωb̄

) (
ωβ − ωb̄

) ei(ωā−ωb̄)t

+

〈
Ψα

���V̂
−
ā

���Ψβ
〉〈
Ψβ

���V̂
+
b̄

���Ψ0

〉
(
ωα − ωā + ωb̄

) (
ωβ + ωb̄

) ei(−ωā+ωb̄)t

+

〈
Ψα

���V̂
−
ā

���Ψβ
〉〈
Ψβ

���V̂
−

b̄
���Ψ0

〉
(
ωα − ωā − ωb̄

) (
ωβ − ωb̄

) ei(−ωā−ωb̄)t



, (7)

where ωα = Eα − E0 is the αth excitation energy.
The auxiliary coupling C(t) based on the time-dependent

many-body wavefunction is defined as

C(t) =

〈
Ψ(t)

�����
d
dx

�����
Ψ(t)

〉
. (8)

We first consider the first-order auxiliary coupling C(1)(t). Sub-
stituting Eq. (4) into Eq. (8) and collecting the coefficients of
eiωāt , one can find the residue of C(1)(t) at frequency ωα as

lim
ωā→ωα

(ωα − ωā)C(1)(ωā) =
〈
Ψ0

���V̂
+
ā

���Ψα
〉〈
Ψ0

�����
d
dx

�����
Ψα

〉
. (9)

Clearly, the second bracket at the right-hand side of Eq. (9)
is NAC, gx

0α, between the ground state and the αth excited
state. Similarly, for the second-order auxiliary coupling C(2)(t),
substituting Eq. (4) into Eq. (8) and collecting the coefficients
of ei(ωā+ωb̄)t , one can find the residue of C(2)(t) at frequencies
ωā = ωα and ωb̄ = −ωβ as

lim
ωā→ωα ,ωb̄→−ωβ

(ωα − ωā)
(
ωβ + ωb̄

)
C(2) (ωā,ωb̄

)
=

〈
Ψ0

���V̂
+
ā

���Ψα
〉〈
Ψβ

���V̂
+
b̄

���Ψ0

〉〈
Ψα

�����
d
dx

�����
Ψβ

〉
. (10)

The third bracket at the right-hand side of Eq. (10) is just NAC,
gx
αβ , between the αth and the βth excited states. The next step

is to determine the residues of the auxiliary couplings based
on TDDFT.

B. Brief summary of PAW method

In this subsection, we present the basic concepts of the
PAW formalism, which are necessary to understand the PAW
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implementation of first- and second-order TDKS equations
and the NAC matrix. In the PAW method,33,34 the all-electron
(AE) wavefunction |ψi〉 is a linear transformation of the
pseudo-wavefunction (PS) ���ψ̃i

〉
as

���ψiσ

〉
= T ���ψ̃iσ

〉
=

���ψ̃iσ

〉
+

∑
I

(���φI

〉
−

���φ̃I

〉)〈
p̃I

���ψ̃iσ

〉
, (11)

where φI , φ̃I , and p̃I are the AE partial waves, the PS partial
waves, and the projector functions, respectively, defined in the
core region. The index I also includes the angular momentum
quantum numbers and an additional index for the reference
energy. The AE charge density related to the orbitals i and j is
calculated as

nijσ(r) = ψ∗iσ(r)ψjσ(r) = ñijσ(r) − ñ1
ijσ(r) + n1

ijσ(r), (12)

where ñ is the PS charge density calculated on a uniform plane-
wave grid. ñ1 and n1 are one-center charge densities computed
on a radial grid within the core region of each ion. To treat the
long-range electrostatic interaction between the core charge
density and the PS charge density, a compensation charge
density n̂ on the plane-wave grid is introduced as

n̂ijσ(r) =
∑

IJ ,LM

〈
ψ̃iσ

���p̃I

〉〈
p̃J

���ψ̃jσ

〉
Q̂LM

IJ (r), (13)

where the function Q̂LM
IJ (r) can be found in Eq. (27) of Ref. 34.

ñ1
ij + n̂ij has the same moments as the exact density ñ1

ij within
the core. The action of KS Hamiltonian onto each orbital is
given by34,35

H̃σ���ψ̃iσ

〉
=

(
−

1
2
∇2 + Ṽσloc

)
���ψ̃iσ

〉
+

∑
IJ

|p̃I 〉
(
D̂IJ

[
Ṽσloc

]
+ D1

IJ − D̃1
IJ

)〈
p̃J

���ψ̃iσ

〉
−

∑
j

ṼEX

[
ñjiσ + n̂jiσ

] ���ψ̃jσ

〉
−

∑
j,IJ

|p̃I 〉D̂IJ

[
ṼEX

]〈
p̃J

���ψ̃jσ

〉
−

∑
(I ,K)(J ,L)

(
K1

IJLK − K̃1
IJLK

)
ρσLJ |p̃I 〉

〈
p̃K

���ψ̃iσ

〉
, (14)

where Ṽσloc is the KS effective local potential consisting
of Hartree, local exchange-correlation, and local pseudopo-
tential terms, which is evaluated on the plane-wave grid.
D̂IJ

[
Ṽ

]
=

∑
LM ∫ Ṽ (r)Q̂LM

IJ (r)dr.
(
D1

IJ − D̃1
IJ

)
is calculated by

∂
(
E1 − Ẽ1

)
/∂ρσIJ , where E1 and Ẽ1 are parts of the total energy

computed on the radial grid34 and ρσIJ =
∑

i

〈
ψ̃iσ

���p̃I

〉〈
p̃J

���ψ̃iσ

〉
is the occupancy of each augmentation channel (I, J). ṼEX

is the two-orbital exchange potential and K1
IJLK (K̃1

IJLK ) is
the two-electron four-AE (PS)-partial-wave integral.35 Here,
the symbol EX represents a generalized exchange, which can
include a long-range interaction operator, such as the error
function r−1erf(r). Thus, one can also exploit various hybrid
functionals, such as PBE0,36 range-separated hybrid (RSH)
functional,37,38 and optimally tuned RSH for solids.39 The
ground state KS equation is then expressed as

H̃σ ���ψ̃iσ

〉
=

∑
j

ε ijσ S̃���ψ̃jσ

〉
, (15)

with the orthonormal condition
〈
ψ̃iσ

���S̃
���ψ̃jτ

〉
= δijδστ , where

S̃ = T †T is the overlap operator.

C. First- and second-order perturbation in TDDFT

Considering a system perturbed by an external potential,
the TD-KS orbitals ���ψ̃(t)

〉
satisfy the TDKS equation,

iS̃
d
dt

���ψ̃iσ(t)
〉
=

[
H̃σ(t) + δṼext(t)

] ���ψ̃iσ(t)
〉
, (16)

where δṼext is the external perturbing potential. The
TD-KS orbitals also satisfy the orthonormal condition〈
ψ̃iσ(t)���S̃

���ψ̃jτ(t)
〉
= δijδστ . Up to the second-order pertur-

bation, we can express the corresponding TD-KS orbital
as

���ψ̃iσ(t)
〉
= e−iεiσ t

(���ψ̃iσ

〉
+ ���ψ̃

(1)
iσ

〉
+ ���ψ̃

(2)
iσ

〉)
. (17)

Here, ���ψ̃iσ

〉
refers to the time-independent ground-state

KS orbital. ���ψ̃
(1)
iσ

〉
and ���ψ̃

(2)
iσ

〉
are the time-dependent first-

and second-order TDKS orbitals. Substituting Eq. (17)
into Eq. (16), we arrive at the first-order TDKS
equation

H̃σ ���ψ̃
(1)
iσ

〉
+

∑
jτ

〈
ψ̃iσ

���K̃στ
���ψ̃jτψ̃

(1)
jτ

〉
+

∑
jτ

〈
ψ̃iσ

���K̃στ
���ψ̃

(1)
jτ ψ̃jτ

〉
+ δṼext(t)

���ψ̃iσ

〉
= ε iσ S̃���ψ̃

(1)
iσ

〉
+ iS̃

d
dt

���ψ̃
(1)
iσ

〉
(18)

and the second-order TDKS equation

H̃σ ���ψ̃
(2)
iσ

〉
+

∑
jτ

〈
ψ̃iσ

���K̃στ
���ψ̃jτψ̃

(2)
jτ

〉
+

∑
jτ

〈
ψ̃iσ

���K̃στ
���ψ̃

(2)
jτ ψ̃jτ

〉
+

∑
jτ

〈
ψ̃(1)

iσ
���K̃στ

���ψ̃jτψ̃
(1)
jτ

〉
+

∑
jτ

〈
ψ̃(1)

iσ
���K̃στ

���ψ̃
(1)
jτ ψ̃jτ

〉
+

∑
jτ

〈
ψ̃iσ

���K̃στ
���ψ̃

(1)
jτ ψ̃

(1)
jτ

〉
+

1
2

∑
jj′ττ′

[〈
ψ̃iσ

���K̃
′
σττ′

���ψ̃
(1)
jτ ψ̃jτψ̃

(1)
j′τ′ψ̃j′τ′

〉
+

〈
ψ̃iσ

���K̃
′
σττ′

���ψ̃
(1)
jτ ψ̃jτψ̃j′τ′ψ̃

(1)
j′τ′

〉
+
〈
ψ̃iσ

���K̃
′
σττ′

���ψ̃jτψ̃
(1)
jτ ψ̃

(1)
j′τ′ψ̃j′τ′

〉
+

〈
ψ̃iσ

���K̃
′
σττ′

���ψ̃jτψ̃
(1)
jτ ψ̃j′τ′ψ̃

(1)
j′τ′

〉]
+ δṼext(t)

���ψ̃
(1)
iσ

〉
= ε iσ S̃���ψ̃

(2)
iσ

〉
+ iS̃

d
dt

���ψ̃
(2)
iσ

〉
. (19)
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Here, we have defined the orbitals via the kernel functional as〈
ψ̃jσ

���K̃στ
���ψ̃kτψ̃lτ

〉
≡

{
ṼH[ñklτ + n̂klτ] +

δ2Exc

δnσδnτ
(ñklτ + n̂klτ)

}
���ψ̃jσ

〉
+

∑
IJ

|p̃I 〉D̂IJ

[
ṼH[ñklτ + n̂klτ] +

δ2Exc

δnσδnτ
(ñklτ + n̂klτ)

]〈
p̃J

���ψ̃jσ

〉
+

∑
IJ ,I′J′

|p̃I 〉
〈
p̃J

���ψ̃jσ

〉 δ2
(
E1 − Ẽ1

)
δρσIJδρ

τ
I′J′

〈
ψ̃kτ

���p̃I′
〉〈

p̃J′
���ψ̃lτ

〉
− δστ




ṼEX

[
ñkjσ + n̂kjσ

] ���ψ̃lσ +
∑
IJ

|p̃I 〉D̂IJ

[
ṼEX

]〈
p̃J

���ψ̃lσ

〉

+
∑

(I ,K)(J ,L)

(
K1

IJLK − K̃1
IJLK

)
|p̃I 〉

〈
p̃K

���ψ̃jσ

〉〈
ψ̃kσ

���p̃L

〉〈
p̃J

���ψ̃lσ

〉


(20)

and the orbitals via the derivative of the kernel functional as〈
ψ̃jσ

���K̃
′
σττ′

���ψ̃kτψ̃lτψ̃k′τ′ψ̃l′τ′
〉
≡

δ3Exc

δnσδnτδnτ′
(ñklτ + n̂klτ)(ñk′l′τ′ + n̂k′l′τ′)

���ψ̃jσ

〉
+

∑
IJ

��p̃I
〉
D̂IJ

[
δ3Exc

δnσδnτδnτ′
(ñklτ + n̂klτ)(ñk′l′τ′ + n̂k′l′τ′)

]〈
p̃J

���ψ̃jσ

〉
+

∑
IJ ,I′J′,I′′J′′

|p̃I 〉
〈
p̃J

���ψ̃jσ

〉 δ3
(
E1 − Ẽ1

)
δρσIJδρ

τ
I′J′δρ

τ′

I′′J′′

〈
ψ̃kτ

���p̃I′
〉〈

p̃J′
���ψ̃lτ

〉〈
ψ̃k′τ′

���p̃I′′
〉〈

p̃J′′
���ψ̃l′τ′

〉
, (21)

where ṼH is the Hartree potential and Exc is the local exchange-
correlation functional.

Under the harmonic perturbing potential with a set of
frequencies {ωā},

δṼext(t) =
∑

ā

[
Ṽ+

ā eiωāt + Ṽ−ā e−iωāt
]
, (22)

the first- and second-order TDKS orbitals can be expressed as

���ψ̃
(1)
iσ

〉
=

∑
ā

[���ψ̃
+
iσ,ā

〉
eiωāt + ���ψ̃

−
iσ,ā

〉
e−iωāt

]
(23)

and

���ψ̃
(2)
iσ

〉
=

∑
āb̄

[���ψ̃
++
iσ,āb̄

〉
ei(ωā+ωb̄)t + ���ψ̃

+−
iσ,āb̄

〉
ei(ωā−ωb̄)t

+ ���ψ̃
−+
iσ,āb̄

〉
ei(−ωā+ωb̄)t + ���ψ̃

−−

iσ,āb̄

〉
ei(−ωā−ωb̄)t

]
. (24)

Substituting Eq. (23) into Eq. (18) and collecting the coeffi-
cient of e±iωāt , we can obtain the first-order TDKS equation
for the frequency-dependent orbitals ���ψ̃

±
iσ,ā

〉
,

H̃σ ���ψ̃
±
iσ,ā

〉
+

∑
jτ

〈
ψ̃iσ

���K̃στ
���ψ̃jτψ̃

±
jτ,ā

〉
+

∑
jτ

〈
ψ̃iσ

���K̃στ
���ψ̃
∓
jτ,āψ̃jτ

〉
+ [Ṽ±ā , γ̃σ]���ψ̃iσ

〉
= ε iσ S̃���ψ̃

±
iσ,ā

〉
∓ ωaS̃���ψ̃

±
iσ,ā

〉
, (25)

where γ̃σ =
∑

i
���ψ̃iσ

〉〈
ψ̃iσ

��� is the zero-order density matrix.
Due to the orthonormality constrains of TDKS orbitals, we
have

〈
ψ̃jσ

���S̃
���ψ̃

+
iσ,ā

〉
+
〈
ψ̃−jσ,ā

���S̃
���ψ̃iσ

〉
= 0. According to the paral-

lel transport gauge in TDDFT,40 the first-order TDKS orbitals
can be chosen to be orthogonal to the subspace spanned by
the occupied orbitals, i.e.,

〈
ψ̃jσ

���S̃
���ψ̃
±
iσ,ā

〉
= 0. Thus, Eq. (25) is

solved in the subspace spanned by the virtual KS orbitals. By
introducing the projection operator P̃σc = 1 −

∑
i S̃���ψ̃iσ

〉〈
ψ̃iσ

���,
Eq. (25) can be cast into the form of a linear matrix equation,

[(
Ã B̃
B̃ Ã

)
+ ωā

(
S̃ 0
0 −S̃

)] (
ψ̃+

ā
ψ̃−ā

)
= −

(
P̃c[Ṽ

+
ā , γ̃]ψ̃

P̃c[Ṽ
−

ā , γ̃]ψ̃

)
, (26)

where the operators Ã and B̃ act on the orbitals according to
the following equations:

[
Ãψ̃±

]
iσ
=

∑
j

(
H̃σδij − ε ijσ S̃

) ���ψ̃
±
jσ

〉
+

∑
jτ

〈
P̃σc ψ̃iσ

���K̃στ
���ψ̃jτP̃τc ψ̃

±
jτ

〉
,

[
B̃ψ̃±

]
iσ
=

∑
jτ

〈
P̃σc ψ̃iσ

���K̃στ
���P̃
τ
c ψ̃
±
jτψ̃jτ

〉
.

(27)

The energy ωα and first-order TDKS orbitals ���ψ̃
±
iσ,α

〉
of the

αth excited state can be determined as the poles of the linear
response function where Eq. (26) becomes singular. Based on
the spectral properties41 of the response operators Ã and B̃,
the inverse of the super-matrix in Eq. (26) is equal to

[(
Ã B̃
B̃ Ã

)
+ ωā

(
S̃ 0
0 −S̃

)]−1

=
∑
α

{
1

ωα − ωā

(
ψ̃+
α

ψ̃−α

) (
ψ̃+
α ψ̃

−
α

)
+

1
ωα + ωā

(
ψ̃−α
ψ̃+
α

) (
ψ̃−α ψ̃

+
α

)}
.

(28)

Substituting Eq. (28) into Eq. (26), one can express the first-
order TDKS orbitals at frequency ωa as a linear combination
of the excited states,

(
ψ̃+

ā
ψ̃−ā

)
= −

∑
α




V ā
0α

ωα − ωā

(
ψ̃+
α

ψ̃−α

)
+

V ā
α0

ωα + ωā

(
ψ̃−α
ψ̃+
α

)


, (29)

where V ā
0α =

∑
iσ

[〈
ψ̃+

iσ,α
���Ṽ

+
ā

���ψ̃iσ

〉
+

〈
ψ̃−iσ,α

���Ṽ
−
ā

���ψ̃iσ

〉]
and

equals to 〈Ψ0 |V̂+
ā |Ψα〉 obtained in Sec. II A.

By substituting Eq. (24) into Eq. (19) and collecting
the coefficient of e±i(ωā+ωb̄)t , one arrives at the second-order

TDKS equation for the frequency-dependent orbitals
����ψ̃
±±

iσ,āb̄

〉
,
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H̃σ ���ψ̃
±±

iσ,āb̄

〉
+

∑
jτ

〈
ψ̃iσ

���K̃στ
����ψ̃jτψ̃

±±

jτ,āb̄

〉
+

∑
jτ

〈
ψ̃iσ

���K̃στ
����ψ̃
∓∓

jτ,āb̄
ψ̃jτ

〉
+




∑
jτ

〈
ψ̃±iσ,ā

���K̃στ
����ψ̃jτψ̃

±

jτ,b̄

〉
+

∑
jτ

〈
ψ̃±iσ,ā

�����
K̃στ

�����
ψ̃∓

jτ,b̄
ψ̃jτ

〉

+
∑
jτ

〈
ψ̃iσ

�����
K̃στ

�����
ψ̃∓jτ,āψ̃

±

jτ,b̄

〉
+

(
ā↔ b̄

)


+
∑
jj′ττ′

[〈
ψ̃iσ

�����
K̃ ′σττ′

�����
ψ̃∓jτ,āψ̃jτψ̃

∓

j′τ′,b̄
ψ̃j′τ′

〉
+

〈
ψ̃iσ

���K̃
′
σττ′

����ψ̃
∓
jτ,āψ̃jτψ̃j′τ′ψ̃

±

j′τ′,b̄

〉
+
〈
ψ̃iσ

���K̃
′
σττ′

����ψ̃jτψ̃
±
jτ,āψ̃

∓

j′τ′,b̄
ψ̃j′τ′

〉
+

〈
ψ̃iσ

�����
K̃ ′σττ′

�����
ψ̃jτψ̃

±
jτ,āψ̃j′τ′ψ̃

±

j′τ′,b̄

〉]

+
{
Ṽ±ā

���ψ̃
±

iσ,b̄

〉
+

(
ā↔ b̄

)}
= ε iσ S̃���ψ̃

±±

iσ,āb̄

〉
∓

(
ωā + ωb̄

)
S̃���ψ̃

±±

iσ,āb̄

〉
. (30)

Here,
(
ā↔ b̄

)
indicates the same expression but with the

indices ā and b̄ interchanged. Based on the orthonormality
constrains of the TDKS orbitals, the projection of ���ψ̃

±±

iσ,āb̄

〉
into

the subspace of the occupied KS orbitals is given by〈
ψ̃jσ

���S̃
���ψ̃

++
iσ,āb̄

〉
+

〈
ψ̃−−

jσ,āb̄

����S̃
���ψ̃iσ

〉
= −

〈
ψ̃−jσ,ā

���S̃
���ψ̃

+
iσ,b̄

〉
−

〈
ψ̃−

jσ,b̄

����S̃
���ψ̃

+
iσ,ā

〉
. (31)

The projection of ���ψ̃
±±

iσ,āb̄

〉
into the subspace of the virtual KS

orbitals can be obtained by applying P̃σc onto both sides of
Eq. (30), which leads to a linear matrix equation as

[(
Ã B̃
B̃ Ã

)
+

(
ωā + ωb̄

) ( S̃ 0
0 −S̃

)] (
P̃cψ̃

++
āb̄

P̃cψ̃
−−

āb̄

)
=

(
S̃Ṽ

+
āb̄

S̃Ṽ
−

āb̄

)
, (32)

where

S̃���Ṽ
±

iσ,āb̄

〉
=

∑
jkτ

〈
P̃σc ψ̃iσ

���K̃στ
���ψ̃jτψ̃kτ

〉{〈
ψ̃∓kτ,ā

���S̃
���ψ̃
±

jτ,b̄

〉
−

〈
ψ̃∓

kτ,b̄
���S̃

���ψ̃
±
jτ,ā

〉}
−




∑
jτ

〈
P̃σc ψ̃

±
iσ,ā

���K̃στ
����ψ̃jτψ̃

±

jτ,b̄

〉

+
∑
jτ

〈
P̃σc ψ̃

±
iσ,ā

���K̃στ
����ψ̃
∓

jτ,b̄
ψ̃jτ

〉
+

∑
jτ

〈
P̃σc ψ̃iσ

���K̃στ
���ψ̃
∓
jτ,āψ̃

±

jτ,b̄

〉
+

(
ā↔ b̄

)


+



∑
jkτ

S̃���ψ̃
±
jσ,ā

〉〈
ψ̃jσψ̃iσ

���K̃στ
���ψ̃kτψ̃

±

kτ,b̄

〉
+

∑
jkτ

S̃���ψ̃
±
jσ,ā

〉〈
ψ̃jσψ̃iσ

���K̃στ
���ψ̃
∓

kτ,b̄
ψ̃kτ

〉
+

(
ā↔ b̄

)


+
∑
jj′ττ′

[〈
P̃σc ψ̃iσ

�����
K̃ ′σττ′

�����
ψ̃∓jτ,āψ̃jτψ̃

∓

j′τ′,b̄
ψ̃j′τ′

〉
+

〈
P̃σc ψ̃iσ

�����
K̃ ′σττ′

�����
ψ̃∓jτ,āψ̃jτψ̃j′τ′ψ̃

±

j′τ′,b̄

〉
+

〈
P̃σc ψ̃iσ

�����
K̃ ′σττ′

�����
ψ̃jτψ̃

±
jτ,āψ̃

∓

j′τ′,b̄
ψ̃j′τ′

〉

+

〈
P̃σc ψ̃iσ

�����
K̃ ′σττ′

�����
ψ̃jτψ̃

±
jτ,āψ̃j′τ′ψ̃

±

j′τ′,b̄

〉]
−

{
P̃σc [Ṽ±ā , γ̃σ±

b̄
]���ψ̃iσ

〉
+

(
ā↔ b̄

)}
. (33)

Here, γ̃σ±ā =
∑

i

(���ψ̃iσ

〉〈
ψ̃∓iσ,ā

��� + ���ψ̃
±
iσ,ā

〉〈
ψ̃iσ

���
)

is the first-order
density matrix at frequency ±ωā.

D. Nonadiabatic coupling in TDDFT

We are now ready to derive the residues of the auxiliary
couplings within TDDFT and to obtain explicit expressions
of NAC with the TDKS orbitals. In TDDFT, the auxiliary
couplings are defined as

C̃(t) =
∑
iσ

〈
ψ̃iσ(t)���T

† d
dx

T ���ψ̃iσ(t)
〉
. (34)

Substituting Eq. (17) into Eq. (34) and collecting the coeffi-
cients of eiωāt , one obtains the first-order auxiliary coupling at
frequency ωā as

C̃(1)(ωā) =
∑
iσ

〈
ψ̃iσ

���T
† d

dx
T ���ψ̃

+
iσ,ā

〉
+
∑
iσ

〈
ψ̃−iσ,ā

���T
† d

dx
T ���ψ̃iσ

〉
.

(35)
Using Eq. (29), the residue of C̃(1)(ωā) at frequency ωα can
be expressed as

lim
ωā→ωα

(ωα − ωā)C̃(1)(ωā)

= V ā
0α

∑
iσ

〈
ψ̃+

iσ,α − ψ̃
−
iσ,α

���T
† d

dx
T ���ψ̃iσ

〉
. (36)

Comparing Eq. (9) and Eq. (36), one can immediately
arrive at NAC between the ground state and the αth excited
state,

gx
0α =

∑
iσ

〈
ψ̃+

iσ,α − ψ̃
−
iσ,α

���T
† d

dx
T ���ψ̃iσ

〉
. (37)
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Next, we derive NAC between the excited states based on the second-order auxiliary coupling. Substituting Eq. (17)
into Eq. (34) and collecting the coefficients of ei(ωā+ωb̄)t , one obtains the second-order auxiliary coupling at frequencies ωā

and ωb̄,

C̃(2) (ωā,ωb̄
)
=

∑
iσ

d
dx

〈
ψ̃iσ

���S̃
���ψ̃

++
iσ,āb̄

〉
+
∑
iσ

〈
ψ̃−iσ,ā

���T
† d

dx
T ���ψ̃

+
iσ,b̄

〉
+
∑
iσ

〈
ψ̃−

iσ,b̄
���T
† d

dx
T ���ψ̃

+
iσ,ā

〉
−
∑
iσ

〈
ψ̃++

iσ,āb̄
− ψ̃−−

iσ,āb̄
���T
† d

dx
T ���ψ̃iσ

〉
.

(38)
Following Eqs. (29) and (31), the residue of the first three terms (denoted by {1∼3}) on the right-hand side of Eq. (38) at
frequencies ωā = ωα and ωb̄ = −ωβ can be calculated by

lim
ωā→ωα ,ωb̄→−ωβ

(ωα − ωā)
(
ωβ + ωb̄

)
C(2) (ωā,ωb̄

)
{1 ∼ 3} = −V ā

0αV b̄
β0

∑
iσ

[〈
ψ̃+

iσ,α
���T
† d

dx
T ���ψ̃

+
iσ,β

〉
−

〈
ψ̃−iσ,α

���T
† d

dx
T ���ψ̃

−
iσ,β

〉]

= −V ā
0αV b̄

β0

∑
iσ

[〈
ψ̃+

iσ,α
���

(
T †dT

dx

)
���ψ̃

+
iσ,β

〉
−

〈
ψ̃−iσ,α

���

(
T †dT

dx

)
���ψ̃
−
iσ,β

〉]

−V ā
0αV b̄

β0

∑
iσ

[〈
ψ̃+

iσ,α

�����
S̃

�����
d
dx
ψ̃+

iσ,β

〉
−

〈
ψ̃−iσ,α

�����
S̃

�����
d
dx
ψ̃−iσ,β

〉]
. (39)

Here,
(
T †dT/dx

)
indicates the explicit derivative of operator T with respect to x, and the derivatives of the first-order TDKS

orbitals are not involved. To arrive at Eq. (39), we have employed the orthogonality condition,∑
iσ

[〈
ψ̃+

iσ,α
���S̃

���ψ̃
+
iσ,β

〉
−

〈
ψ̃−iσ,α

���S̃
���ψ̃
−
iσ,β

〉]
= −δαβ . (40)

Given that ���ψ̃
±
iσ,α

〉
is the eigenstate of the super-matrix in Eq. (26), one can easily prove the following equation:

∑
iσ

[〈
ψ̃+

iσ,α

�����
S̃

�����
d
dx
ψ̃+

iσ,β

〉
−

〈
ψ̃−iσ,α

�����
S̃

�����
d
dx
ψ̃−iσ,β

〉]
= ω−1

βα

(
ψ̃+
α ψ̃

−
α

) [(
Ã B̃
B̃ Ã

)
+ ωβ

(
S̃ 0
0 −S̃

)] (
dψ̃+

β/dx
dψ̃−β/dx

)

= −ω−1
βα

(
ψ̃+
α ψ̃

−
α

){ d
dx

[(
Ã B̃
B̃ Ã

)
+ ωβ

(
S̃ 0
0 −S̃

)]}(
ψ̃+

β

ψ̃−β

)
= −ω−1

βα

dMαβ

dx

�����ψ̃±α ,ψ̃±β

,

(41)

where we have introduced the following variables:

ωβα ≡ ωβ − ωα,

Mαβ ≡
(
ψ̃+
α ψ̃

−
α

) [(
Ã B̃
B̃ Ã

)
+ ωβ

(
S̃ 0
0 −S̃

)] (
ψ̃+

β

ψ̃−β

)
.

(42)

Considering that the second-order TDKS orbital ��ψ̃±±iσ,āb̄

〉
can be split into two parts: one is the projection onto the subspace of the

occupied KS orbitals and the other one is the projection onto the subspace of the virtual KS orbitals. The fourth term (denoted
by {4}) on the right-hand side of Eq. (38) can be expressed as

C̃(2) (ωā,ωb̄
)
{4} = −

∑
iσ

〈
ψ̃++

iσ,āb̄
− ψ̃−−

iσ,āb̄
���P̃
σ
c T †

d
dx

T ���ψ̃iσ

〉
−

∑
ijσ

〈
ψ̃++

iσ,āb̄
− ψ̃−−

iσ,āb̄
���S̃

���ψ̃jσ

〉〈
ψ̃jσ

���T
† d

dx
T ���ψ̃iσ

〉
. (43)

Using Eqs. (29), (31), and (32), the residue of C̃(2) (ωā,ωb̄
)
{4} at frequencies ωā = ωα and ωb̄ = −ωβ is given by

lim
ωā→ωα ,ωb̄→−ωβ

(ωα − ωā)
(
ωβ + ωb̄

)
C̃(2) (ωā,ωb̄

)
{4} = V ā

0αV b̄
β0

∑
ijσ

[〈
ψ̃+

jσ,α
���S̃

���ψ̃
+
iσ,β

〉
+

〈
ψ̃−iσ,α

���S̃
���ψ̃
−
jσ,β

〉]〈
ψ̃iσ

���T
† d

dx
T ���ψ̃jσ

〉
−V ā

0αV b̄
β0

∑
iσ

〈
T̃+

iσ,αβ − T̃−iσ,αβ
���T
† d

dx
T ���ψ̃iσ

〉
. (44)

Here, T̃±iσ,αβ can be determined by the following linear matrix equation:

[(
Ã B̃
B̃ Ã

)
+

(
ωα − ωβ

) ( S̃ 0
0 −S̃

)]
*
,

T̃
+
αβ

T̃
−

αβ

+
-
= *

,

S̃Ṽ
+
αβ

S̃Ṽ
−

αβ

+
-
, (45)
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where the expression of S̃Ṽ
+
αβ and S̃Ṽ

−

αβ is shown in Eq. (A2) of the Appendix. Finally, combining Eqs. (10), (39), (41), and
(44), one can express the NAC between the αth and the βth excited states as

gx
αβ = ω

−1
βα

dMαβ

dx

�����ψ̃±α ,ψ̃±β

−
∑
iσ

〈
T̃+

iσ,αβ − T̃−iσ,αβ

�����
T † d

dx
T

�����
ψ̃iσ

〉
−

∑
iσ

[〈
ψ̃+

iσ,α

�����

(
T †dT

dx

) �����
ψ̃+

iσ,β

〉
−

〈
ψ̃−iσ,α

�����

(
T †dT

dx

) �����
ψ̃−iσ,β

〉]

+
∑
ijσ

[〈
ψ̃+

jσ,α

�����
S̃

�����
ψ̃+

iσ,β

〉
+

〈
ψ̃−iσ,α

�����
S̃

�����
ψ̃−jσ,β

〉]〈
ψ̃iσ

�����
T † d

dx
T

�����
ψ̃jσ

〉
. (46)

In Eqs. (37) and (46), the evaluation of gx
0α and gx

αβ
involves the derivatives of the KS orbitals with respect to every
ionic coordinate x. In principle, these derivatives can be com-
puted by solving the self-consistent Sternheimer equation42

based on the density functional perturbation theory.43,44 How-
ever, for a large system composed of many ions (or x) and
KS orbitals, the derivative calculations can be prohibitively
expensive. Instead, we will resort to the following Lagrangian
formulation45,46 to compute the NAC matrix elements. The
Lagrangian formulation can avoid the derivative calculations
of the KS orbitals with respect to x entirely, thus drastically
reducing the computational cost.47,48

E. Lagrangian formulation
1. NAC gx0α

The Lagrangian for the NAC matrix elements between the
ground and excited states can be constructed as

L̂0α

[
x, ψ̃, Z̃, Γ

]
=

∑
iσ

〈
ψ̃+

iσ,α − ψ̃
−
iσ,α

���S̃
���ψ̃iσ

〉
+

∑
ijσ

〈
Z̃iσ

���
(
H̃σδij − ε ijσ S̃

) ���ψ̃jσ

〉
−

∑
i≥j,σ

Γijσ

(〈
ψ̃iσ

���S̃
���ψ̃jσ

〉
− δij

)
, (47)

by enforcing both the Brillouin condition, Eq. (15), and the
orthonormal condition for the KS orbitals. Z̃ is the well-
known Z-vector.49 The multipliers Z̃ and Γ are determined
from the stationary condition of the Lagrangian functional,
i.e., δL̂0α/δψ̃iσ = 0, and they can be solved by projections
onto both the space spanned by the virtual KS orbitals and the
space spanned by the occupied KS orbitals. The first projection
leads to a linear equation,

[(
Ã + B̃

)
Z̃

]
iσ
= −S̃���ψ̃

+
iσ,α − ψ̃

−
iσ,α

〉
, (48)

and we immediately have

���Z̃iσ

〉
= ω−1

α
���ψ̃

+
iσ,α + ψ̃−iσ,α

〉
. (49)

The second projection yields the solution of Γijσ according to(
1 + δij

)
Γijσ = ω

−1
α

∑
kτ

[〈
ψ̃iσψ̃jσ

���K̃στ
���ψ̃kτ

(
ψ̃+

kτ,α + ψ̃−kτ,α

)〉
+
〈
ψ̃iσψ̃jσ

���K̃στ
���
(
ψ̃+

kτ,α + ψ̃−kτ,α

)
ψ̃kτ

〉]
. (50)

Once Z̃ and Γ are obtained, the NAC matrix elements are
simply the partial derivatives of the Lagrangian functional
with respect to x,

gx
0α =

∂L̂0α

∂x
=

∑
iσ

〈
ψ̃+

iσ,α − ψ̃
−
iσ,α

���T
† ∂

∂x
T ���ψ̃iσ

〉
+ω−1

α

∑
ijσ

〈
ψ̃+

iσ,α + ψ̃−iσ,α

�����

∂
(
H̃σδij − ε ijσ S̃

)
∂x

�����
ψ̃j

〉

−
∑

i≥j,σ

Γijσ

〈
ψ̃iσ

�����
∂S̃
∂x

�����
ψ̃jσ

〉
. (51)

Here ∂/∂x indicates the partial derivative with respect to x;
the derivatives of KS orbitals with respect to x, ���dψ̃iσ/dx

〉
, are

no longer involved. Thus, the Lagrangian formulation enables
much more expedient calculations of the NAC matrix ele-
ments. Note that one has to consider the explicit dependence
of the PAW projector functions T on x when computing the
partial derivatives. The expression of terms on the right-hand
side of Eq. (51) can be found in Eqs. (A3) and (A4) of the
Appendix.

2. NAC gxαβ
Similarly, the Lagrangian for the NAC matrix elements

between two excited states can be written as

L̂αβ
[
x, ψ̃, Z̃, Γ

]
= ω−1

βαMαβ −
∑
iσ

〈
T̃+

iσ,αβ − T̃−iσ,αβ
���S̃

���ψ̃iσ

〉
−

∑
iσ

[〈
ψ̃+

iσ,α
���S̃

���ψ̃
+
iσ,β

〉
−

〈
ψ̃−iσ,α

���S̃
���ψ̃
−
iσ,β

〉]
+

∑
ijσ

[〈
ψ̃+

jσ,α
���S̃

���ψ̃
+
iσ,β

〉
+
〈
ψ̃−iσ,α

���S̃
���ψ̃
−
jσ,β

〉]〈
ψ̃iσ

���S̃
���ψ̃jσ

〉
+

∑
ijσ

〈
Z̃iσ

���
(
H̃σδij − ε ijσ S̃

) ���ψ̃jσ

〉
−

∑
i≥j,σ

Γijσ

(〈
ψ̃iσ

���S̃
���ψ̃jσ

〉
− δij

)
. (52)

The solution of δL̂αβ/δψ̃iσ = 0 by projection onto the space
spanned by the virtual KS orbitals leads to the following linear
equation:

[(
Ã + B̃

)
Z̃

]
iσ
= S̃���T̃

+
iσ,αβ − T̃−iσ,αβ

〉
− ω−1

βαP̃σc
�����
δMαβ

δψ̃iσ

〉
.

(53)
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According to Eq. (45) and the fact that

S̃���Ṽ
+
iσ,αβ + Ṽ−iσ,αβ

〉
= −P̃σc

�����
δMαβ

δψ̃iσ

〉
, (54)

we arrive immediately at
���Z̃iσ

〉
= ω−1

βα
���T̃

+
iσ,αβ + T̃−iσ,αβ

〉
. (55)

The projection onto the space spanned by the occupied KS orbitals yields the solution of Γijσ given by(
1 + δij

)
Γijσ = ω

−1
βα

〈
ψ̃jσ

�����
δMαβ

δψ̃iσ

〉
+

[〈
ψ̃+

jσ,α
���S̃

���ψ̃
+
iσ,β

〉
+

〈
ψ̃−iσ,α

���S̃
���ψ̃
−
jσ,β

〉]
+ ω−1

βα

∑
kτ

[〈
ψ̃iσψ̃jσ

���K̃στ
���ψ̃kτ

(
T̃+

iσ,αβ + T̃−iσ,αβ

)〉
+
〈
ψ̃iσψ̃jσ

���K̃στ
���
(
T̃+

iσ,αβ + T̃−iσ,αβ

)
ψ̃kτ

〉]
. (56)

Finally, the NAC matrix elements between the excited states are evaluated as

gx
αβ =

∂L̂αβ
∂x

= ω−1
βα

∂Mαβ

∂x
−

∑
iσ

〈
T̃+

iσ,αβ − T̃−iσ,αβ

�����
T † ∂

∂x
T

�����
ψ̃iσ

〉
−

∑
iσ

[〈
ψ̃+

iσ,α

�����
T † ∂

∂x
T

�����
ψ̃+

iσ,β

〉
−

〈
ψ̃−iσ,α

�����
T † ∂

∂x
T

�����
ψ̃−iσ,β

〉]

+
∑
ijσ

[〈
ψ̃+

jσ,α

�����
S̃

�����
ψ̃+

iσ,β

〉
+

〈
ψ̃−iσ,α

�����
S̃

�����
ψ̃−jσ,β

〉]〈
ψ̃iσ

�����
T † ∂

∂x
T

�����
ψ̃jσ

〉
+ ω−1

βα

∑
iσ

〈
T̃+

iσ,αβ + T̃−iσ,αβ

�����

∂
(
H̃σδij − ε ijσ S̃

)
∂x

�����
ψ̃iσ

〉

−
∑

i≥j,σ

Γijσ

〈
ψ̃iσ

�����
∂S̃
∂x

�����
ψ̃jσ

〉
, (57)

where the partial derivative of Mαβ with respect to the ionic
coordinate x can be found in Eq. (A5) of the Appendix.

III. NUMERICAL VALIDATIONS

The formulation presented here is general and can be
implemented in any plane-wave PAW software package as a
plug-and-compute module. In this work, the ground state cal-
culations are carried out with the Vienna Ab Initio Simulation
Package (VASP).50,51 The ground state charge density and KS
states are then taken as the input in our TDDFT formulation to
compute the excited states and NAC matrix elements. To val-
idate the present formulation, we calculate the NAC for two
small molecules, LiH and HeH+, which have been studied pre-
viously by the AO based NAC-TDDFT.28 The spin-restricted
ground state calculations are performed with supercell dimen-
sions of 20 Å × 20 Å × 20 Å. The energy cutoff of the
planewave basis is 400 eV for LiH and 600 eV for HeH+.
Here, the local adiabatic exchange-correlation functional
with the Perdew−Burke−Ernzerhof generalized gradient

approximation52 is used and only Γ-point in the Brillouin zone
is considered.

First, we calculate NAC gx
01 between the ground state

11∑+ and the first excited state 21∑+ in LiH with respect to the
z coordinate of the H atom. The potential energy curves and
NAC gx

01 as a function of the interatomic distance are shown
in Fig. 1. We find that gx

01 first reaches a local maximum at a
bond length of 1.1 Å, then a local minimum about the equi-
librium bond length, and finally the maximum around 3.0 Å.
Our results of gx

01 are very similar to those obtained by using
the AO (cc-pVDZ) based NAC-TDDFT.28

Next, we examine the NAC between two well-separated
excited states. The simple two-electron system HeH+ is stud-
ied, and we compute the NAC gx

12 between the two lowest
excited states with 1∑+ symmetry as a function of the bond
length. The excitation energies of the two excited states as well
as their difference are depicted in Fig. 2(a). The two states are
well-separated with the bond length ranging from 0.6 Å to
2.5 Å. However, the energy gap between them coincides with
the excitation energy of the first excited state at 1.5 Å, which

FIG. 1. (a) The energy of 11∑+ (black
curve) and 21∑+ (red curve) states of
LiH as a function of the bond length.
The excitation energy computed with
the present formulation (squares and
dots) and with the previous formula-
tion (crosses) using the AO basis set.28

The energy minima of 11∑+ are set to
be zero. (b) NAC gx

01 between the two
states as a function of the bond length.
The NAC computed with the present for-
mulation (black) and with the previous
formulation (red) using the AO basis
set.28
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FIG. 2. (a) Excitation energies of the first two 1∑+ excited states ω1 (black curve) and ω2 (red curve) of HeH+, as well as the energy difference between the
two excited states ω21 (blue curve) as a function of the bond length. The excitation energy computed with the present formulation (squares and dots) and with
the previous formulation (crosses) using the AO basis set.28 The NAC between the two lowest 1∑+ excited states, gx

12, with respect to the coordinates of (b) zHe
and (c) zH, as a function of the bond length. The z direction is along the bond direction of HeH+. The NAC computed with the present formulation (black) and
with the previous formulation (red) using the AO basis set.28

leads to an unphysical result shown below. In Figs. 2(b) and
2(c), we plot gx

12 with respect to the bond length in the z direc-
tion for the He atom and H atom, respectively, where the z
direction is the bonding direction in HeH+. In the case of HeH+,
the absolute values of gx

12 with respect to zHe and zH are not the
same. Again, the present results for gx

12 agree with the previous
results using the AO (aug-cc-pVTZ) based NAC-TDDFT.28

We find that gx
12 diverges near 1.5 Å, which is induced by

the problematic solutions of T̃
±

αβ in Eq. (45) as alluded to
earlier. The inverse of the super-matrix in Eq. (45) contains
poles at ±ωγ −ωβα = 0. If the energy separation between the
two excited states, ωβα, approaches to the energy of one of
them, ωγ, Eq. (45) cannot be inverted and T̃

±

αβ diverges as

1/
(
ωγ − ωβα

)
. This is the reason for divergent gx

12 at the bond

length of 1.5 Å, whereω21 curve intersects with theω1 curve as
apparent in Fig. 2. This unphysical result is a consequence of an
incorrect pole structure for the frequency-dependent quadratic
response function in the adiabatic approximation, which is
widely known.27,29,53

IV. CONCLUSIONS AND OUTLOOK

In summary, we have reformulated the first-order NAC
in TDDFT with plane waves and PAW based on the lin-
ear and quadratic time-dependent response theory and hybrid
exchange-correlation functionals. The Lagrangian functionals
are employed to compute the NAC matrix elements in order to
avoid the expensive derivative calculations of the KS orbitals
with respect to ionic coordinates. The implemented method-
ology is validated for small molecules LiH and HeH+, and
the computed NAC matrix elements agree very well with the
previous results using the AO basis.

One important extension of the formulation is to develop
an accurate, efficient, and robust ab initio nonadiabatic molec-
ular dynamics (NAMD) method for describing nonadiabatic
excitations in molecular and extended systems. We are imple-
menting the fewest-switches surface hopping (FSSH) algo-
rithm54–56 based on the proposed formulation. FSSH is one of
the most popular NAMD methods, designed to minimize the

number of stochastic hops. The execution of FSSH dynam-
ics requires two key ingredients: (1) potential energy surface
(PES) of excited states, including the excitation energy and
ionic forces associated with the excited states. We have pre-
viously developed a TDDFT method which can compute the
excitation energy and excited state forces based on plane waves
and PAW57 and (2) NAC between the excited states which
can be computed based on the present formulation. To avoid
the unphysical divergence of NAC in NAMD simulations,
the pseudo-wavefunction approximation25,27 can be employed
to compute NAC when the energy difference between two
excited states of interest coincides with the energy of another
excited state. Under the pseudo-wavefunction approxima-
tion, the NAC is computed via Eq. (46) excluding T̃±iσ,αβ
terms.

For applications to large-scale systems, we could turn
to approximations which can significantly reduce the com-
putational costs while maintaining the similar accuracy. For
example, we have developed an efficient TDDFT method57

by projecting the complex TDKS matrix to a substantially
reduced sub-Hilbert space. This method has proven to yield
accurate excitation energy and ionic forces for large systems
consisting of more than a thousand of atoms.58,59 To reduce
the computational cost of hybrid functionals, we can apply
the first-order perturbation theory to the hybrid KS Hamil-
tonian which is not updated self-consistently.60,61 Thus, the
time-consuming Fock exchange integrals are calculated only
once. This is somewhat analogous to the one-shot GW approx-
imation. These two approximations can be applied when the
exact formulation proposed in the present work becomes too
expensive for certain problems.
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APPENDIX: EXPRESSION FOR TERMS IN EQ. (45) AND PARTIAL DERIVATIVES OF LAGRANGIAN

By the definition

lim
ωa→ωα ,ωb→−ωβ

(ωα − ωa)
(
ωβ + ωb

) ���Ṽ
±
iσ,ab

〉
≡ Va

0αVb
β0

���Ṽ
±
iσ,αβ

〉
, (A1)

the matrix elements of S̃Ṽ
±

αβ are given by

S̃���Ṽ
±
iσ,αβ

〉
=

∑
jkτ

〈
P̃σc ψ̃iσ

���K̃στ
���ψ̃jτψ̃kτ

〉{〈
ψ̃∓kτ,α

���S̃
���ψ̃
∓
jτ,β

〉
−

〈
ψ̃±kτ,β

���S̃
���ψ̃
±
jτ,α

〉}
−




∑
jτ

〈
P̃σc ψ̃

±
iσ,α

���K̃στ
���ψ̃jτψ̃

∓
jτ,β

〉
+

∑
jτ

〈
P̃σc ψ̃

±
iσ,α

���K̃στ
���ψ̃
±
jτ,βψ̃jτ

〉
+

∑
jτ

〈
P̃σc ψ̃

∓
iσ,β

���K̃στ
���ψ̃
±
jτ,α

〉
+

∑
jτ

〈
P̃σc ψ̃

∓
iσ,β

���K̃στ
���ψ̃
∓
jτ,αψ̃jτ

〉

+
∑
jτ

〈
P̃σc ψ̃iσ

���K̃στ
���ψ̃
∓
jτ,αψ̃

∓
jτ,β

〉
+

∑
jτ

〈
P̃σc ψ̃iσ

���K̃στ
���ψ̃
±
jτ,βψ̃

±
jτ,α

〉


+



∑
jkτ

S̃���ψ̃
±
jσ,α

〉〈
ψ̃jσψ̃iσ

���K̃στ
���ψ̃kτψ̃

∓
kτ,β

〉
+
∑
jkτ

S̃���ψ̃
±
jσ,α

〉〈
ψ̃jσψ̃iσ

���K̃στ
���ψ̃
±
kτ,βψ̃kτ

〉
+

∑
jkτ

S̃���ψ̃
∓
jσ,β

〉〈
ψ̃jσψ̃iσ

���K̃στ
���ψ̃kτψ̃

±
kτ,α

〉

+
∑
jkτ

S̃���ψ̃
∓
jσ,β

〉〈
ψ̃jσψ̃iσ

���K̃στ
���ψ̃
∓
kτ,αψ̃kτ

〉


+
∑
jj′ττ′

[〈
P̃σc ψ̃iσ

���K̃
′
σττ′

���ψ̃
∓
jτ,αψ̃jτψ̃

±
j′τ′,βψ̃j′τ′

〉
+
〈
P̃σc ψ̃iσ

���K̃
′
σττ′

���ψ̃
∓
jτ,αψ̃jτψ̃j′τ′ψ̃

∓
j′τ′,β

〉
+

〈
P̃σc ψ̃iσ

���K̃
′
σττ′

���ψ̃jτψ̃
±
jτ,αψ̃

±
j′τ′,βψ̃j′τ′

〉
+

〈
P̃σc ψ̃iσ

���K̃
′
σττ′

���ψ̃jτψ̃
±
jτ,αψ̃j′τ′ψ̃

∓
j′τ′,β

〉]
.

(A2)

The first term on the right-hand side of Eq. (51) is obtained by

〈
ψ̃+

iσ,α

�����
T † ∂

∂x
T

�����
ψ̃iσ

〉
=

∑
IJ

〈
ψ̃+

iσ,α
���p̃I

〉(〈
φI

����
∂φJ

∂x

〉
−

〈
φ̃I

����
∂φ̃J

∂x

〉)〈
p̃J |ψ̃iσ

〉
+

∑
IJ

〈
ψ̃+

iσ,α
���p̃I

〉(〈
φI

���φJ

〉
−

〈
φ̃I

���φ̃J

〉)〈∂p̃J

∂x

�����
ψ̃iσ

〉
. (A3)

The partial derivatives of KS Hamiltonian elements are expressed as

〈
ψ̃iσ

�����
∂H̃σ

∂x

�����
ψ̃jσ

〉
=

∫ [
ñijσ(r) + n̂ijσ(r)

] ∂vH[ñZc]
∂x

dr +
∫

∂n̂ijσ(r)

∂x
Ṽσloc(r)dr +

∑
kτ

∫
∂n̂kkτ(r)
∂x

{
ṼH

[
ñijσ + n̂ijσ

]

+
δ2Exc

δnσδnτ
(
ñijσ + n̂ijσ

)}
dr +

∑
kτ,IJ ,I′J′

∂
〈
ψ̃kτ

���p̃I′
〉〈

p̃J′
���ψ̃kτ

〉
∂x

δ2
(
E1 − Ẽ1

)
δρσIJδρ

τ
I′J′

〈
ψ̃iσ

���p̃I

〉〈
p̃J

���ψ̃jσ

〉

+
∑
IJ

∂
〈
ψ̃iσ

���p̃I

〉〈
p̃J

���ψ̃jσ

〉
∂x

(
D1

IJ − D̃1
IJ

)
−

∑
k

∫
∂n̂ikσ(r)
∂x

ṼEX
[
ñkjσ + n̂kjσ

]
dr

−
∑

k

∫
∂n̂kjσ(r)

∂x
ṼEX[ñikσ + n̂ikσ]dr −

∑
(I ,K)(J ,L)

(
K1

IJLK − K̃1
IJLK

)
ρσLJ

∂
〈
ψ̃iσ

���p̃I

〉〈
p̃K

���ψ̃jσ

〉
∂x

−
∑

k,(I ,K)(J ,L)

(
K1

IJLK − K̃1
IJLK

)〈
ψ̃iσ

���p̃I

〉〈
p̃K

���ψ̃jσ

〉∂〈ψ̃kσ
���p̃L

〉〈
p̃J

���ψ̃kσ

〉
∂x

, (A4)

where vH[ñZc] represents the ionic pseudopotential due to the pseudo core charge density ñZc.
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The partial derivative of Mαβ with respect to the ionic coordinate x is calculated by

∂Mαβ

∂x
=

∑
iσ

[〈
ψ̃+

iσ,α

�����

∂
(
H̃σ − εiσ S̃

)
∂x

�����
ψ̃+

iσ,β

〉
+

〈
ψ̃−iσ,α

�����

∂
(
H̃σ − εiσ S̃

)
∂x

�����
ψ̃−iσ,β

〉]
−

∑
ijσ

〈
ψ̃iσ

�����
∂H̃σ

∂x

�����
ψ̃jσ

〉(〈
ψ̃+

iσ,α
���S̃

���ψ̃
+
jσ,β

〉
+
〈
ψ̃−iσ,α

���S̃
���ψ̃
−
jσ,β

〉)
+ ωβ

∑
iσ

(〈
ψ̃+

iσ,α

�����
∂S̃
∂x

�����
ψ̃+

iσ,β

〉
−

〈
ψ̃−iσ,α

�����
∂S̃
∂x

�����
ψ̃−iσ,β

〉)
+

∑
ijστ

∂

∂x

{〈
ψ̃+

iσ,αψ̃iσ
���K̃στ

���ψ̃jτψ̃
+
jτ,β

〉
+
〈
ψ̃−iσ,αψ̃iσ

���K̃στ
���ψ̃jτψ̃

−
jτ,β

〉
+

〈
ψ̃+

iσ,αψ̃iσ
���K̃στ

���ψ̃
−
jτ,βψ̃jτ

〉
+

〈
ψ̃−iσ,αψ̃iσ

���K̃στ
���ψ̃

+
jτ,βψ̃jτ

〉}

−
∑

ijkστ

{〈
ψ̃+

iσ,α

�����
∂S̃
∂x

�����
ψ̃kσ

〉〈
ψ̃kσψ̃iσ

���K̃στ
���ψ̃jτψ̃

+
jτ,β

〉
+

〈
ψ̃−iσ,α

�����
∂S̃
∂x

�����
ψ̃kσ

〉〈
ψ̃kσψ̃iσ

���K̃στ
���ψ̃jτψ̃

−
jτ,β

〉
+

〈
ψ̃+

iσ,α

�����
∂S̃
∂x

�����
ψ̃kσ

〉〈
ψ̃kσψ̃iσ

���K̃στ
���ψ̃
−
jτ,βψ̃jτ

〉
+

〈
ψ̃−iσ,α

�����
∂S̃
∂x

�����
ψ̃kσ

〉〈
ψ̃kσψ̃iσ

���K̃στ
���ψ̃

+
jτ,βψ̃jτ

〉}
, (A5)

where the partial derivative of the kernel functional with respect to x is given by

∂
〈
ψ̃iσψ̃jσ

���K̃στ
���ψ̃kτψ̃lτ

〉
∂x

=

∫
∂n̂ijσ(r)

∂x

{
ṼH[ñklτ + n̂klτ] +

δ2Exc

δnσδnτ
(ñklτ + n̂klτ)

}
dr +

∫
∂n̂klτ(r)
∂x

{
ṼH

[
ñijσ + n̂ijσ

]
+

δ2Exc

δnσδnτ
(
ñijσ + n̂ijσ

)}
dr

+
∑

IJ ,I′J′

∂
〈
ψ̃iσ

���p̃I

〉〈
p̃J

���ψ̃jσ

〉
∂x

δ2
(
E1 − Ẽ1

)
δρσIJδρ

τ
I′J′

〈
ψ̃kτ

���p̃I′
〉〈

p̃J′
���ψ̃lτ

〉
+

∑
IJ ,I′J′

∂
〈
ψ̃kτ

���p̃I′
〉〈

p̃J′
���ψ̃lτ

〉
∂x

δ2
(
E1 − Ẽ1

)
δρσIJδρ

τ
I′J′

〈
ψ̃iσ

���p̃I

〉〈
p̃J

���ψ̃jσ

〉

+
∑
mτ′

∫
∂n̂mmτ′(r)

∂x
δ3Exc

δnσδnτδnτ′
(
ñijσ + n̂ijσ

)
(ñklτ + n̂klτ)dr +

∑
mτ′,IJ ,I′J′,I′′J′′

∂
〈
ψ̃mτ′

���p̃I′′
〉〈

p̃J′′
���ψ̃mτ′

〉
∂x

δ3
(
E1 − Ẽ1

)
δρσIJδρ

τ
I′J′δρ

τ′

I′′J′′

×
〈
ψ̃iσ

���p̃I

〉〈
p̃J

���ψ̃jσ

〉〈
ψ̃kτ

���p̃I′
〉〈

p̃J′
���ψ̃lτ

〉
−

∫
∂n̂ilσ(r)
∂x

ṼEX

[
ñkjσ + n̂kjσ

]
dr −

∫
∂n̂kjσ(r)

∂x
ṼEX[ñilσ + n̂ilσ]dr

−
∑

(I ,K)(J ,L)

(
K1

IJLK − K̃1
IJLK

) ∂〈ψ̃iσ
���p̃I

〉〈
p̃K

���ψ̃jσ

〉
∂x

〈
ψ̃kσ

���p̃L

〉〈
p̃J

���ψ̃lσ

〉

−
∑

(I ,K)(J ,L)

(
K1

IJLK − K̃1
IJLK

)〈
ψ̃iσ

���p̃I

〉〈
p̃K

���ψ̃jσ

〉∂〈ψ̃kσ
���p̃L

〉〈
p̃J

���ψ̃lσ

〉
∂x

. (A6)
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